技術(shù)支持
技術(shù)支持產(chǎn)品描述
用于機(jī)器視覺的周邊產(chǎn)品包括圖像采集卡、濾光片、光虎視覺軟件、嵌入式計(jì)算機(jī)等。
型號(hào)
描述
景深
景深景深是光學(xué)攝影中一個(gè)很重要的參數(shù),它是指光學(xué)系統(tǒng)獲取清晰成像時(shí),被測物體所能移動(dòng)的距離范圍。當(dāng)一個(gè)光學(xué)系統(tǒng)的景深較小時(shí),就會(huì)出現(xiàn)背景虛化的現(xiàn)象。光圈、焦距、工作距離都是影響景深的重要因素。在對(duì)光學(xué)系統(tǒng)的景深進(jìn)行計(jì)算時(shí),需要先了解容許彌散圓的概念。彌散圓是指在焦點(diǎn)前后,光線開始聚集和擴(kuò)散,點(diǎn)的影像變成模糊時(shí)所形成的一個(gè)擴(kuò)大的圓。如果彌散圓的直徑足夠小,成像會(huì)足夠清晰;如果彌散圓再大些,成像就會(huì)顯得模糊。中間的臨界點(diǎn),這個(gè)可以被接受的最大的直徑被稱為容許彌散圓直徑。在拍攝過程中,通過彌散圓判斷圖像是否銳利進(jìn)而判斷景深的深淺。下圖為兩款不同雙遠(yuǎn)心鏡頭利用景深板拍攝的測量景深的圖片。其中圖二為型號(hào)光虎視覺TTL11.5-25-45C雙遠(yuǎn)心鏡頭在平行光照射下拍攝的圖片。圖一圖二實(shí)際應(yīng)用中,景深可分為前景深和后景深,計(jì)算公式如下:景深(dof)=圖三根據(jù)景深公式我們可以看出,景深與有效F數(shù)、焦距、工作距離都有關(guān)系。圖四是利用光線追跡的方法解釋景深與F數(shù)的關(guān)系。增大F數(shù)之后,相同工作距離下,光線入射角變小,在容許彌散圓大小不變的情況下,使得景深變大。即有效F數(shù)與景深正相關(guān)。圖五給出了在焦距、拍攝距離固定的情況下,不同F(xiàn)數(shù)下的拍攝效果圖。當(dāng)F數(shù)較小時(shí),景深較小,從圖片中可以明顯的看出背景已經(jīng)虛化。隨著F數(shù)的增加,背景虛化現(xiàn)象明顯變小,甚至消失。圖四圖五圖六給出了有效F數(shù)與景深之間的關(guān)系圖。有效F數(shù)越小,光圈越大,景深越?。挥行數(shù)越大,光圈越小,景深越大。圖六此外,通過景深公式,我們還可以推算出:若鏡頭焦距可變,光圈和工作距離確定時(shí),焦距越大,景深越?。唤咕嘣叫?,景深越大。當(dāng)鏡頭焦距、F數(shù)確定時(shí),工作距離越大,景深越大;工作距離越小,景深也會(huì)隨之減小,容易出現(xiàn)背景虛化現(xiàn)象。而雙遠(yuǎn)心鏡頭與FA鏡頭略有不同。在雙遠(yuǎn)心鏡頭的使用過程中,使用者可以微調(diào)鏡頭與相機(jī)傳感器之間的距離,即法蘭距,從而獲得想要的景深效果。當(dāng)然景深的極限還是由雙遠(yuǎn)心鏡頭本身的設(shè)計(jì)決定,這些調(diào)整只能在設(shè)計(jì)的景深極限范圍內(nèi)進(jìn)行微調(diào)。需注意的一點(diǎn)是,景深是一個(gè)相對(duì)的概念,在景深之內(nèi)和景深之外,并不存在絕對(duì)的清晰或者模糊的界限。景深的測量也具有一定的主觀性,需要使用者根據(jù)自己的具體需求進(jìn)行調(diào)整?!緛碓矗汗饣⒁曈X內(nèi)部培訓(xùn)資料】
曝光時(shí)間對(duì)成像質(zhì)量的影響
曝光時(shí)間對(duì)成像質(zhì)量的影響在任何工業(yè)相機(jī)應(yīng)用中,相機(jī)的曝光時(shí)間是設(shè)置的關(guān)鍵。在任意的情況下,由于我們拍攝物體的移動(dòng),生成的圖像可能會(huì)模糊。為了最大程度的優(yōu)化圖像質(zhì)量,可以計(jì)算最小曝光時(shí)間來消除模糊并最大化拍攝亮度。在這篇文章中,將幫助了解曝光時(shí)間對(duì)圖像質(zhì)量的影響并避免它。什么是曝光時(shí)間曝光時(shí)間或快門速度是讓光線落在圖像傳感器上的時(shí)間。曝光時(shí)間越長,就越能“曝光”傳感器為像素充電以使其更亮??扉T速度通常以幾分之一秒的形式給出,例如攝影相機(jī)中的 1/60、1/125、1/1000秒。在工業(yè)相機(jī)中,曝光時(shí)間通常以毫秒為單位,只是快門速度的倒數(shù)。(即1/60秒=0.0166秒或16毫秒)。圖像模糊模糊是當(dāng)物體相對(duì)于傳感器移動(dòng)并在曝光時(shí)間內(nèi)移動(dòng)跨越2個(gè)或更多像素時(shí)所得到的。當(dāng)拍攝移動(dòng)速度超過在曝光時(shí)間內(nèi)可以完全靜止運(yùn)動(dòng)的物體時(shí),就會(huì)看到這一現(xiàn)象。在左邊的圖像中,可以清晰的拍到運(yùn)動(dòng)員,但是球移動(dòng)得非??欤瑢?dǎo)致看起來很模糊。本例中的曝光時(shí)間為 1/500 秒(2 毫秒),但在此曝光期間球移動(dòng)了許多像素。快門速度越快,物體相對(duì)于它開始的位置移動(dòng)的可能性就越小。在機(jī)器視覺中,相機(jī)絕大多數(shù)情況下是固定的,所以它們不會(huì)移動(dòng),但擔(dān)心的是物體在曝光時(shí)間內(nèi)移動(dòng)所產(chǎn)生的影響。根據(jù)應(yīng)用場景的不同,圖像處理可能對(duì)模糊敏感,也可能不敏感。例如,假設(shè)相機(jī)橫向上的分辨率為2448像素,而傳感器上的呈現(xiàn)出來的物體為1000像素。在曝光期間,被拍攝的物體移動(dòng)1個(gè)像素,則在傳感器上呈現(xiàn)出來的圖像就整體偏移了1個(gè)像素,這就是“像素模糊”??扉T速度越快,物體相對(duì)于它開始的位置移動(dòng)的可能性就越小。在機(jī)器視覺中,相機(jī)絕大多數(shù)情況下是固定的,所以它們不會(huì)移動(dòng),但擔(dān)心的是物體在曝光時(shí)間內(nèi)移動(dòng)所產(chǎn)生的影響。根據(jù)應(yīng)用場景的不同,圖像處理可能對(duì)模糊敏感,也可能不敏感。例如,假設(shè)相機(jī)橫向上的分辨率為2448像素,而傳感器上的呈現(xiàn)出來的物體為1000像素。在曝光期間,被拍攝的物體移動(dòng)1個(gè)像素,則在傳感器上呈現(xiàn)出來的圖像就整體偏移了1個(gè)像素,這就是“像素模糊”。如何計(jì)算最合適的曝光時(shí)間在大多數(shù)情況下,都需要沒有像素模糊的清晰圖像。要計(jì)算合適的曝光時(shí)間,需要注意以下幾點(diǎn):l 以像素為單位的相機(jī)分辨率(沿行進(jìn)方向)l 視野(FOV)l 物體的速度l 曝光時(shí)間然后,就可以使用以下公式計(jì)算對(duì)象在曝光期間將移動(dòng)多少像素:B = Vp * Te * Np / FOVB = 以像素為單位的模糊Vp = 物體的速度FOV = 運(yùn)動(dòng)方向的視野Te = 曝光時(shí)間(以秒為單位)Np = 跨越視野的像素?cái)?shù)光虎視覺認(rèn)為,在大多數(shù)情況下,產(chǎn)生超過1個(gè)像素的拖影時(shí),模糊就會(huì)成為一個(gè)問題。在精密測量中,即使是1個(gè)像素的模糊也可能太多,需要使用更快的曝光時(shí)間?!緛碓矗汗饣⒁曈X內(nèi)部培訓(xùn)資料】
平場校正技術(shù)
平場校正技術(shù)什么是平場校正?平場校正是一種用于提高數(shù)字成像質(zhì)量的技術(shù),它消除了由傳感器的像素對(duì)像素靈敏度變化和光路失真而導(dǎo)致的圖像偽像效果,通常用于像素與像素敏感度以及暗電流變化相關(guān)的校正。圖為Alkeria Necta 線掃相機(jī)所演示的平場校正什么時(shí)候會(huì)用到平場校正?由于自然制造公差,每個(gè)傳感器的亮度輸出都有一定程度的不均勻性,每個(gè)像素對(duì)相同數(shù)量的光的反應(yīng)可能不同。使用面陣相機(jī)時(shí),圖像中亮度的差異不會(huì)產(chǎn)生太大的影響,因?yàn)檎麄€(gè)圖像中出現(xiàn)的差異很小。整體圖像幾乎不受影響,通常對(duì)于大多數(shù)應(yīng)用程序來說已經(jīng)足夠了。但是,當(dāng)使用線掃相機(jī)時(shí),線掃相機(jī)的傳感器高度只有幾個(gè)像素,這意味著任何像素產(chǎn)生的錯(cuò)誤將在同一位置的每次刷新中重復(fù)。例如,產(chǎn)生的圖像錯(cuò)誤可能會(huì)以垂直條紋的形式發(fā)生,會(huì)對(duì)記錄的圖像數(shù)據(jù)產(chǎn)生重大影響。如何平場校正?圖像的誤差可以通過兩個(gè)步驟來進(jìn)行校正:暗信號(hào)非均勻性(DSNU)校正和光響應(yīng)非均勻性(PRNU)校正。要校準(zhǔn) DSNU,必須在黑暗中記錄參考圖像,而對(duì)于 PRNU,必須用均勻的照明記錄參考圖像。因此,平場校正中的這兩個(gè)單獨(dú)的步驟分別稱為暗場校正和亮場校正。平場校正的第一步:低暗噪聲校正,用于盡可能降低暗信號(hào)非均勻性(也稱為偏移噪聲或固定模式噪聲)。因此,暗場和亮場校正都是校正 DSNU 和 PRNU 的平場校正的一部分。暗場校正是最容易校準(zhǔn)的。它只需要在圖像傳感器上不帶照明的情況下記錄參考圖像。為此,需要遮蓋住鏡頭。然后,使用偏移量對(duì)所有像素值進(jìn)行標(biāo)準(zhǔn)化,就可以補(bǔ)償傳感器芯片的不均勻性。在第二步,即光響應(yīng)非均勻性(PRNU)校正(也稱為低頻平場校正),由于它糾正的低頻變化,通常由光路失真引起,而不是由于像素到像素在照片響應(yīng)中的變化,因此校準(zhǔn)低頻校正的實(shí)際光強(qiáng)就不那么重要了,(通常來說保持在12.5%到90%之間的適當(dāng)值即可)。使用模擬增益用于在均勻的照明條件下獲取所有像素的一定目標(biāo)值。由此來消除邊緣的強(qiáng)度下降,圖像顯示整個(gè)寬度下的均勻亮度。平場校正優(yōu)點(diǎn)及應(yīng)用行業(yè)在平場校正后,線掃圖像沒有條紋和陰影,這就使得圖像分析更容易、更方便、更可靠,不需要使用軟件執(zhí)行任何后續(xù)的校正。通常用于對(duì)光較為敏感,即非常依靠光來進(jìn)行下一步判斷的線掃應(yīng)用,如半導(dǎo)體行業(yè)、醫(yī)療行業(yè)、包裝行業(yè)等。
光學(xué)基礎(chǔ)概念之F-Number
在鏡頭行業(yè)里,一般不常使用相對(duì)孔徑的概念,而是使用相對(duì)孔徑的倒數(shù),稱之為F數(shù),也叫光圈數(shù)。記作F/-。例如,F(xiàn)/5.6表示F數(shù)等于5.6。即相對(duì)孔徑的倒數(shù)為5.6,它表示鏡頭的焦距等于光圈直徑的5.6倍。顯然,像面接收到的光強(qiáng)反比于F數(shù)的平方。即 F數(shù)又稱為鏡頭速度,F(xiàn)數(shù)小的鏡頭速度快。因?yàn)榕臄z的曝光時(shí)間△t 正比于F數(shù)的平方。一、F數(shù)與分辨率的關(guān)系 F數(shù)能表征鏡頭的分辨率,F(xiàn)數(shù)越小,能分辨兩點(diǎn)間的距離越小,即分辨率越高。因?yàn)閳A孔最小衍射角為: 所以,像面上能夠分辨得開的兩點(diǎn)間的最小距離可以計(jì)算得到: 二、F數(shù)與光圈的關(guān)系 F數(shù)和光圈是一個(gè)反比關(guān)系。即F值越小,光圈越大。F值越大,光圈越?。籉值越小,光圈越大。例如F1.8比F2.8光圈要大,光圈越大進(jìn)光亮越多,光圈小相反,光圈大背景越虛化(如圖1),光圈小背景越清(如圖2)。 圖1. 大光圈成像 圖2. 小光圈成像 三、F數(shù)與景深的關(guān)系 通常我們說,光圈越大,景深越淺;光圈越小,景深越深。那么為什么光圈越大,景深越淺;光圈越小,景深越深呢?首先在了解光圈與景深的關(guān)系之前,我們先介紹兩個(gè)概念。光線射入透鏡匯聚成一點(diǎn),在數(shù)學(xué)上,這個(gè)點(diǎn)我們稱之為焦點(diǎn)。但是在焦點(diǎn)前后形成的光線的聚集和擴(kuò)散,會(huì)產(chǎn)生一個(gè)擴(kuò)大的圓,這個(gè)圓就是允許彌散圓,彌散圓仍然足夠清晰呈現(xiàn)物體,通常我們認(rèn)為這是“合焦”。因此,我們通常用允許彌散圈來作為成像清晰和成像模糊的界限。焦深:兩個(gè)允許彌散圈的距離我們稱之為焦深。景深的大小與焦深有著密切的聯(lián)系(如圖3.成像光路圖)。前焦深對(duì)應(yīng)著前景深,后焦深對(duì)應(yīng)著后景深。所以,要知道光圈與景深的關(guān)系,必須先了解光圈與彌散圈之間的關(guān)系。 彌散圈的取決于光的波長和光圈直徑。 彌散圈直徑= 其中λ是光的波長,f是焦距,N是光圈直徑,一般的f/N即是光圈系數(shù)F值。所以,光圈越大,彌散圈直徑越?。还馊υ叫?,彌散圈直徑越大,即f數(shù)越大,景深越大;f數(shù)越小,景深越小。 如光虎視覺TTL11.5-65遠(yuǎn)心系列 TTL11.5-O5-65C鏡頭其有效F數(shù)為9景深為2.88mm,物方分辨率為12.08μm 滿足需要大視野高景深的客戶的需求,如對(duì)分辨率有更高的要求就需要選擇小景深大F數(shù)鏡頭如TTL11.5-20-65C此鏡頭的放大倍率為2,其F數(shù)為13,景深為0.26其分辨率可達(dá)4.362μm,此系列鏡頭均滿足低畸變,高遠(yuǎn)心。
遠(yuǎn)心鏡頭如何進(jìn)行參數(shù)選型
遠(yuǎn)心鏡頭如何進(jìn)行參數(shù)選型 遠(yuǎn)心鏡頭有兩種類型的遠(yuǎn)心度:物方和像方遠(yuǎn)心度(分別指入射光瞳和出射光瞳位置)。所以,遠(yuǎn)心鏡頭分為:物方遠(yuǎn)心鏡頭,像方遠(yuǎn)心鏡頭、雙遠(yuǎn)心鏡頭。那么需求和合適的鏡頭相匹配就成為了一個(gè)重要的問題,也就是說我們該如何通過我們的需求來匹配到合適的鏡頭。一、影響選型的參數(shù) 那么在我們選擇遠(yuǎn)心鏡頭時(shí),首先應(yīng)明白在什么時(shí)候需要時(shí)選擇遠(yuǎn)心鏡頭。根據(jù)遠(yuǎn)心鏡頭原理特征及獨(dú)特優(yōu)勢 當(dāng)檢查物體遇到以下6種情況時(shí),最好選用遠(yuǎn)心鏡頭: 1)當(dāng)需要檢測有厚度的物體時(shí)(厚度>1/10 FOV直徑); 2)需要檢測不在同一平面的物體時(shí); 3)當(dāng)不清楚物體到鏡頭的距離究竟是多少時(shí); 4)當(dāng)需要檢測帶孔徑、三維的物體時(shí); 5)當(dāng)需要低畸變、圖像效果亮度幾乎完全一致時(shí); 6)當(dāng)缺陷只在同一方向平行照明下才能檢測到時(shí)。其次選擇遠(yuǎn)心鏡頭,要明白遠(yuǎn)心鏡頭相關(guān)指標(biāo)對(duì)應(yīng)的使用條件: 1)物方尺寸:拍攝范圍。 2)像方尺寸:使用的CCD的靶面大小??紤]鏡頭像面和相機(jī)芯片的匹配,對(duì)于遠(yuǎn)心鏡頭來說一般像面越大價(jià)格越高,所以我們在選擇時(shí)盡量考慮相機(jī)芯片規(guī)格和鏡頭像面規(guī)格一致的配合,如果鏡頭的像面直徑大于相機(jī)芯片的對(duì)角線,那對(duì)鏡頭來說會(huì)產(chǎn)生成本浪費(fèi),和視野損失,如果鏡頭像面直徑小于相機(jī)芯片的對(duì)角線,那么最后的成像就會(huì)有暗角、黑角的問題。 3)工作距離:物方鏡頭前表面距離拍攝物的距離。 4)分辨率:使用的CCD像素大小。 5)景深:鏡頭能成清晰像的范圍。像/物倍率越大景深越小。 6)接口:遠(yuǎn)心鏡頭主要圍繞工業(yè)相機(jī)做匹配設(shè)計(jì)的,鏡頭和相機(jī)的接口一般也是常規(guī)的標(biāo)準(zhǔn)接口:C接口、F接口、M42接口、M58接口等。這些接口是鏡頭和相機(jī)它連接在一起的物理標(biāo)準(zhǔn),它不光對(duì)應(yīng)了不同規(guī)格尺寸的卡口或螺紋對(duì)應(yīng)尺寸,它還對(duì)應(yīng)了標(biāo)準(zhǔn)的法蘭距(相機(jī)接口端面到芯片之間的距離),一般1.2英寸極其以下靶面芯片的工業(yè)相機(jī)以C接口為主。 7)放大倍率:光學(xué)放大倍率=CCD相機(jī)元素尺寸/視場實(shí)際尺寸 =CCD(V)或(H)尺寸/視場(V)或(H)尺寸根據(jù)使用情況(物體尺寸和需要的分辨率)選擇物方尺寸合適的物方鏡頭和CCD或CMOS相機(jī),同時(shí)得到像方尺寸,即可計(jì)算出放大倍率,然后根據(jù)產(chǎn)品列表選擇合適的像方鏡頭。選擇過程中還應(yīng)注意景深指標(biāo)的影響,因?yàn)橄?物倍率越大景深越小,為了得到合適的景深,可能還需要重新選擇鏡頭。 8)畸變:遠(yuǎn)心鏡頭通過嚴(yán)格的加工制造和質(zhì)量檢驗(yàn),將此誤差嚴(yán)格控制在0.1%以下甚至無畸變。二、鏡頭選型的參數(shù)計(jì)算 1、分辨率相機(jī)的傳感器sensor是有許多像素點(diǎn)按照矩陣的形式排列而成,分辨率就是以水平方向和垂直方向的像素來表示的。分辨率越高,成像后的圖像像素?cái)?shù)就越高,圖像就越清晰。常用的工業(yè)面陣相機(jī)分辨率有130萬、200萬、500萬等;對(duì)于線陣相機(jī)而言,分辨率就是傳感器水平方向上的像素?cái)?shù),常見有1K、2K、6K等。 在相機(jī)分辨率的選型上,要根據(jù)我們的項(xiàng)目需求而定,并不一定是分辨率越高就越好,分辨率高帶來的圖像數(shù)據(jù)量就大,后期的算法處理復(fù)雜度就高,而且一般分辨率大的相機(jī),幀率一般都不會(huì)太高。 2、傳感器尺寸傳感器尺寸是以有效面積(寬x高)或以對(duì)角線大?。ㄓ⒋纾﹣肀硎镜模R姷膫鞲衅鞒叽缛缦拢簣D1. 傳感器尺寸傳感器尺寸越大,一定程度上表示相機(jī)可容納像素個(gè)數(shù)越多,成像的畫幅越大。3、遠(yuǎn)心度(ecentricity)不同廠家的遠(yuǎn)心鏡頭消除透視誤差的能力也有差異,這是因?yàn)檫h(yuǎn)心度不同。遠(yuǎn)心度定義為主光線與光軸間的夾角θ,如圖所示。圖2. 遠(yuǎn)心度測量假設(shè)物體高低差d=2mm, 鏡頭遠(yuǎn)心度θ=0.05°,則物體位置偏移量=2mm*tan0.05°=1.7µm. 若選用普通鏡頭θ=15°,則物體位置偏移量=2mm*tan15°=535.9µm。因此對(duì)于非平面物體的測量應(yīng)用,只有選用遠(yuǎn)心度高的遠(yuǎn)心鏡頭,才能很好的消除透視誤差,從而減小測量誤差。 4、景深景深,在光學(xué)攝影中是一個(gè)很重要參數(shù),它的大小決定著清晰圖像范圍。在遠(yuǎn)心光學(xué)成像中,景深也是一個(gè)經(jīng)常被提及的參數(shù),它的大小取決于鏡頭倍率、光圈數(shù)、波長、像素大小、客戶使用的邊緣提取算法靈敏度。景深可用于測量應(yīng)用,它通常比缺陷檢測景深要大,圖像的對(duì)比度必須盡可能高。景深非常困難用參數(shù)來定義:它取決于倍率、光圈數(shù)、波長、像素大小、客戶使用的邊緣提取算法的靈敏度。由于這個(gè)原因:沒有客觀的,也沒有標(biāo)準(zhǔn)的方式來定義它:這是一個(gè)主觀參數(shù)。景深=(工作光圈數(shù)*像素大小*應(yīng)用程序特定參數(shù))/(放大倍率*放大倍率)。
光輻射的危害及其防治
光輻射的危害及其防治 什么是光輻射 一般按輻射波長及人眼的生理視覺效應(yīng)將光輻射分成三部分:紫外輻射、可見光和紅外輻射。以電磁波形式或粒子(光子)形式傳播的能量,它們可以用光學(xué)元件反射、成像或色散,這種能量及其傳播過程稱為光輻射。 光輻射的危害 近年來的光生物學(xué)研究表明,光輻射與人類健康息息相關(guān),不管是紫外光、可見光、紅外光,在照射適當(dāng)?shù)那闆r下,都能對(duì)人體的生理產(chǎn)生積極的影響。然而,在照射不足或者照射過度的情況下,光輻射帶來的影響要么是可以忽略的,要么就存在潛在危害。 紫外危害 紫外輻射是指波長范圍在100nm—400nm的光輻射,一般把100nm—280nm稱作UVC,把280nm—315nm稱作UVB,把315nm—400nm稱作UVA。其中100nm—200nm的紫外輻射被大氣吸收,對(duì)人類沒有影響,被稱為真空紫外,因此對(duì)人類有影響主要是200nm—400nm的紫外輻射。 研究表明,紫外線的有害效應(yīng)主要是由于紫外線對(duì)脫氧核糖核酸(DNA)的作用造成的。最有害的效應(yīng)是細(xì)胞致死,其它的效應(yīng)則包括致突、致癌、干擾DNA、核糖核酸(RNA)和蛋白質(zhì)的合成、細(xì)胞分裂的延遲、以及在通透性和能動(dòng)性上的變化等。 就目前所知,紫外線對(duì)人體的有益效應(yīng)極少(如促進(jìn)人的皮膚中產(chǎn)生維生素D),但是紫外線能夠造成的危害卻很多。紫外線對(duì)眼睛的危害主要有:光致角膜炎、光致結(jié)膜炎、白內(nèi)障等。紫外線對(duì)面皮膚的危害主要有:紅斑(短期效應(yīng))、皮膚癌(長期效應(yīng))。 藍(lán)光危害 隨著時(shí)間推移,脂褐質(zhì)在視網(wǎng)膜色素上皮細(xì)胞的積聚將使視網(wǎng)膜更容易受到長時(shí)間光照的損傷。研究表明,對(duì)由于遺傳、營養(yǎng)、環(huán)境、習(xí)慣、年齡等因素而有上述視網(wǎng)膜斑點(diǎn)問題的人群,藍(lán)光特別有害。盡管波長較短的UVA和UVB被角膜和晶狀體吸收,但是研究發(fā)現(xiàn),紫外到藍(lán)光波段的光輻射都能造成此類危害。 可見與紅外危害 電磁波可見部分的波長范圍約在380nm到780nm之間,在這個(gè)范圍內(nèi)的各種波長,都可憑眼睛的顏色感覺來加以區(qū)別。藍(lán)色和紫色屬于短波,紅色屬于長波,黃色和綠色處于可見波長范圍的中間,也是人眼最敏感的區(qū)域。可見光的最重要的效應(yīng)就是我們的視覺,視覺是將光能轉(zhuǎn)化為電能或者神經(jīng)沖動(dòng)的過程,它的光化學(xué)反應(yīng)就是光物理與光異構(gòu)化作用。視覺是人類最重要的知覺功能,人類接收的外界信息中的百分之八十到九十來自視覺,可見光使我們能夠感覺、認(rèn)識(shí)、記憶這個(gè)世界,使我們能夠維持我們的方位。可見與紅外部分的光輻射危害主要有:灼傷、紅斑效應(yīng)、白內(nèi)障等。 此外高強(qiáng)度的光源光輻射也能對(duì)人體造成損傷,如直視激光會(huì)引起黃斑燒傷,會(huì)造成不能恢復(fù)的視力減退,這種傷害是生理性的,往往不能修復(fù)。 光輻射危害的防治 起初為了防止激光對(duì)人體產(chǎn)生危害,建立了IEC/EN 60825激光安全標(biāo)準(zhǔn),將激光安全等級(jí)分為6類安全等級(jí)。如今各種光源越來越普及,為了保護(hù)人們免受光輻射造成的傷害和失明,人們制定了IEC/EN 62471標(biāo)準(zhǔn),目的是為了評(píng)估與不同燈和燈系統(tǒng)相關(guān)的光輻射危害,并全面取代IEC/EN 60825標(biāo)準(zhǔn)中關(guān)于LED產(chǎn)品能量等級(jí)的要求,增加了光生物方面的要求,其中包括輻射強(qiáng)度、輻射亮度等并根據(jù)測試數(shù)據(jù)對(duì)產(chǎn)品進(jìn)行危害分級(jí)。例如美國Smar Vision Lights遵守IEC/EN 62471標(biāo)準(zhǔn)生產(chǎn)的光源,在保證多波長的基礎(chǔ)上(365nm、395nm、470nm、505nm、530nm、625nm、850nm、940nm及白光),可確保光源產(chǎn)生的光輻射對(duì)人體無危害。 根據(jù)EN 62471:2008規(guī)定,按照光輻射來源的潛在光生物學(xué)危害性,將光輻射來源劃分為不同風(fēng)險(xiǎn)組。分組是通過風(fēng)險(xiǎn)評(píng)估來實(shí)現(xiàn)的,而風(fēng)險(xiǎn)評(píng)估是根據(jù)從制造商獲得的信息對(duì)單個(gè)部件或成品進(jìn)行的。若光輻射來源被劃分到“安全”組或“低風(fēng)險(xiǎn)”組,則不需要對(duì)工作場所進(jìn)行詳細(xì)評(píng)估,因?yàn)椴⒉淮嬖诠馍飳W(xué)安全隱患問題。按照危害性,根據(jù)放射限制以及危害超標(biāo)前的允許接觸時(shí)長,將光輻射來源劃分為以下四組: 風(fēng)險(xiǎn)組判斷基礎(chǔ)安全組無光生物學(xué)危害 低風(fēng)險(xiǎn)組正常操作情況下無光生物學(xué)危害 中風(fēng)險(xiǎn)組由于對(duì)強(qiáng)光或熱度不適有保護(hù)性反應(yīng),不會(huì)造成危害 高風(fēng)險(xiǎn)組即使是短暫接觸也有危險(xiǎn) >>光虎光電科技(天津)有限公司<< >>公司網(wǎng)址:gggddd.com.cn<<
光度立體技術(shù)及其應(yīng)用
光度立體技術(shù)及其應(yīng)用隨著計(jì)算機(jī)視覺理論的逐漸成熟,從圖像中獲取物體表面的三維信息的算法己經(jīng)達(dá)到了實(shí)際應(yīng)用的階段。立體視覺技術(shù)、Shape From X技術(shù)、光度立體技術(shù)(Photometric Stereo)等一系列圖形算法可以自動(dòng)從單幅或多幅真實(shí)物體照片中提取出其三維結(jié)構(gòu)的信息,而這些技術(shù)實(shí)施簡便,設(shè)備易于獲取,核心部件僅需一臺(tái)數(shù)碼相機(jī)即可。所以,通過應(yīng)用計(jì)算機(jī)視覺理論,從真實(shí)物體的照片中重建物體的三維結(jié)構(gòu)的技術(shù)是目前得到真實(shí)物體3D模型的比較廉價(jià)的手段。光度立體法光度立體法是SFS(Shape From Shading)陰影恢復(fù)形狀方法的一個(gè)分支,與SFS不同的是,光度立體法使用多幅圖像來還原物體表面的三維結(jié)構(gòu),它要求物體和攝像機(jī)的相對(duì)位置不變,然后使用不同方向的光源照射物體,從而產(chǎn)生不同的明暗效果。由于有多幅不同的光源下的圖像,計(jì)算物體表面的向量場就相對(duì)容易了許多,而且不受物體表面反射系數(shù)的影響。光度立體技術(shù)的優(yōu)點(diǎn)測量任何給定像素的高度不是光度立體技術(shù)的主要考慮因素。相反,該技術(shù)通過使用3D表面取向及其對(duì)反射光的影響產(chǎn)生對(duì)比度圖像,突出局部3D表面變化。使用傳統(tǒng)的2D成像時(shí),顯示的變化可能是不可見的。當(dāng)使用光度立體技術(shù)時(shí),不需要知道測試對(duì)象和相機(jī)之間的精確3D關(guān)系,也不必使用兩個(gè)相機(jī)來捕獲3D數(shù)據(jù)。而是使用具有多個(gè)照明源的單個(gè)相機(jī)系統(tǒng)。通過在不同光照條件下觀察物體,計(jì)算其表面。該方法是利用表面相對(duì)于光源,從傳感器觀察到的表面反射的光量來進(jìn)行計(jì)算的。由于光度立體算法的出現(xiàn),人們越來越意識(shí)到良好的照明以及低成本的多光解決方案是機(jī)器視覺成功的關(guān)鍵,例如Smart Vision Lights的LED燈管理器(LLM)(允許通過以下方式控制四個(gè)燈)基于瀏覽器的簡單界面,成本低于幀抓取器或智能相機(jī)分線盒,光度立體學(xué)在工業(yè)中的應(yīng)用越來越受到關(guān)注,其獨(dú)特優(yōu)點(diǎn)使得許多以前難以或不可能解決的常見工業(yè)檢測應(yīng)用成為可能。 光度立體技術(shù)的應(yīng)用輪胎和夾子例如,無論零件是卡車輪胎還是汽車夾,在零件上讀取凸起的字母對(duì)于機(jī)器視覺系統(tǒng)來說總是有問題的。在這個(gè)例子中,塑料連接器表面具有多種特征,以及數(shù)字"2"和方向符號(hào)。從組成圖像中可以看到,包含剪輯的材料和凸起的字母之間沒有區(qū)別,因此沒有對(duì)比度。在較大的物體(如輪胎)上,通常使用激光三角測量系統(tǒng)創(chuàng)建 3D 曲面圖。用于 3D 測量的激光掃描系統(tǒng)已變得更加集成和有效,但仍是成本高昂的解決方案,并且通常要求對(duì)象在檢查過程中移動(dòng),從而增加了自動(dòng)化解決方案的成本和復(fù)雜性。在這些照片中,黑色塑料夾由位于輪胎周邊 90 度、180 度、270 度和 360 度的線性微型 (LM) LED 燈照亮,并由 LED 燈管理器 (LLM) 控制。當(dāng)相機(jī)觸發(fā)每次曝光時(shí),LLM 會(huì)從不同的方向觸發(fā)光線。相機(jī)將每個(gè)圖像導(dǎo)入帶有光度立體算法的 PC 中,該算法從每個(gè)圖像中獲得最佳像素,并將它們組合成一個(gè)合成圖。(圖片由Matrox Imaging提供)合成皮革穿孔在這個(gè)例子中,顯示了四張合成皮革材料的圖片。人造革,與其模仿的有機(jī)材料類似,具有相當(dāng)大的表面紋理。人眼幾乎不可能在整個(gè)圖像上可視化100%的表面紋理。
【視覺知識(shí)】液態(tài)鏡頭技術(shù)
液態(tài)鏡頭技術(shù)液態(tài)鏡頭是在工業(yè)領(lǐng)域迅速普及的一項(xiàng)新技術(shù),在多種應(yīng)用中它們比傳統(tǒng)鏡頭具有許多優(yōu)勢。實(shí)際上,正是它們的多功能性和靈活性成為成功采用它們的主要?jiǎng)恿Α5鞘裁词且簯B(tài)鏡頭技術(shù)?它是如何工作的?它的作用是什么?液態(tài)鏡頭用于卓越的自動(dòng)對(duì)焦對(duì)于數(shù)字圖片,精確控制焦點(diǎn)是獲得高質(zhì)量圖像的唯一方法。圖像的主體必須非常清晰,而背景的其余部分則更加模糊。自動(dòng)對(duì)焦功能是拍攝優(yōu)質(zhì)照片的核心,而液態(tài)鏡頭為自動(dòng)對(duì)焦帶來了全新的功能。液態(tài)鏡頭可用于多種應(yīng)用,例如:l 數(shù)碼攝影l(fā) 工業(yè)數(shù)據(jù)采集l 條形碼讀?。ㄒ痪S和二維)l 生物特征數(shù)據(jù)采集本質(zhì)上,液態(tài)鏡頭可用于物距變化很大,需要快速自動(dòng)對(duì)焦的任何應(yīng)用。液態(tài)鏡頭如何工作?液態(tài)鏡頭采用電潤濕工藝來實(shí)現(xiàn)卓越的自動(dòng)聚焦功能。透鏡本身是一個(gè)內(nèi)部裝有水和油的密封電池。電潤濕過程可將油滴快速準(zhǔn)確地塑造成有效的鏡片。該過程是連續(xù)的,可逆的,并且對(duì)于大小聚焦步驟都同樣快速。液態(tài)鏡頭改變其形狀的速度似乎很神奇,但實(shí)際上是非??茖W(xué)的。如果將一滴液體放置在疏水表面(排斥液體的表面)上,則液體中的分子將結(jié)合在一起并形成珠子,因?yàn)樗鼈儽槐砻娴氖杷运懦狻.?dāng)向該液體和疏水性阻擋層另一側(cè)的另一種導(dǎo)電材料(如鋁)施加電場時(shí),液體會(huì)靜電吸附到鋁上。組成液體的分子在試圖到達(dá)鋁時(shí)會(huì)散開,導(dǎo)致水滴急劇改變形狀。此過程稱為電潤濕,它是液態(tài)鏡頭的重要基礎(chǔ)。施加的電場越強(qiáng),液體對(duì)導(dǎo)電材料的吸引力就越大。這意味著水將盡其所能地越過障礙物傳播到更遠(yuǎn)的范圍,從而進(jìn)一步擴(kuò)散。通過改變用電量,可以迫使液體采取多種形狀。如果將這種液體用作透鏡,則其變成不同形狀時(shí)將具有不同的焦距,從而可以大大改變傳感器拍攝的圖像。為什么要使用液態(tài)鏡頭技術(shù)?液態(tài)鏡頭的主要優(yōu)點(diǎn)是其靈活性,可以同時(shí)用于多種不同的應(yīng)用。這在不同尺寸物體的大批量生產(chǎn)環(huán)境中尤其有用。例如,一家制藥公司可能對(duì)不同類型的膠囊、藥丸、凝膠片等使用機(jī)器視覺檢查。對(duì)于傳統(tǒng)的鏡頭,將需要設(shè)置多個(gè)圖像系統(tǒng)來檢查每種產(chǎn)品,或者一個(gè)圖像系統(tǒng)必須焦點(diǎn)深度不斷變化。使用液態(tài)鏡頭,一個(gè)圖像系統(tǒng)可以完成多個(gè)圖像系統(tǒng)的工作,可以在圖像系統(tǒng)中編程不同的物距,從而無需停止生產(chǎn)來更改焦深或設(shè)置多個(gè)不同的圖像系統(tǒng)。液態(tài)鏡頭技術(shù)在很大程度上得益于其提供的靈活性,在工業(yè)領(lǐng)域已迅速普及。液體透鏡非常適合廣泛的應(yīng)用,甚至可以提供比許多機(jī)械選件更高的圖像質(zhì)量?!緛碓矗汗饣⒁曈X內(nèi)部培訓(xùn)資料】
圖像畸變的產(chǎn)生及消除畸變的方法
圖像畸變的產(chǎn)生及消除畸變的方法什么是圖像畸變?畸變作為光學(xué)系統(tǒng)中經(jīng)常提到的一個(gè)參數(shù),是限制光學(xué)量測準(zhǔn)確性的重要因素之一。它是光學(xué)系統(tǒng)對(duì)物體所成的像相對(duì)于物體本身而言的失真程度,只引起像的變形,對(duì)像的清晰度并無影響。對(duì)于理想光學(xué)系統(tǒng),在一對(duì)共軛的物像平面上,放大率是常數(shù)。但是對(duì)于實(shí)際的光學(xué)系統(tǒng),僅當(dāng)視場較小時(shí)具有這一性質(zhì),而當(dāng)視場較大或很大時(shí),像的放大率就要隨視場而異,這樣就會(huì)使像相對(duì)于物體失去相似性。這種使像變形的成像缺陷稱為畸變。畸變定義為實(shí)際像高與理想像高差,而在實(shí)際應(yīng)用中經(jīng)常將其與理想像高之比的百分?jǐn)?shù)來表示畸變,稱為相對(duì)畸變,即常見的畸變類型桶形畸變:在桶形畸變中,圖像放大率隨與光軸的距離而減小,體現(xiàn)在圖像呈球體(或桶)周圍映射的效果。魚眼鏡頭具有半球形的視角,它利用這種變形來將無限寬的物平面映射到有限的圖像區(qū)域。在變焦鏡頭中,桶形畸變出現(xiàn)在鏡頭焦距范圍的中間,而在該范圍的廣角端最嚴(yán)重。枕形畸變:在枕形畸變中,圖像放大率隨距光軸距離的增加而增加??梢姷男Ч?,未穿過圖像中心的線像枕形一樣向內(nèi)彎曲,朝向圖像中心。機(jī)器視覺中的圖像畸變圖像畸變帶來的影響光虎視覺認(rèn)為許多檢測應(yīng)用需要非常精確的測量,盡管通過亞像素插值的軟件算法可以提供非常精細(xì)的測量結(jié)果,但是如果創(chuàng)建的圖像有任何變形,它們也無法提供準(zhǔn)確或可重復(fù)的結(jié)果。所以,選擇合適的光學(xué)器件是測量系統(tǒng)能否成功的關(guān)鍵。幸運(yùn)的是,運(yùn)用一些光學(xué)原理,可以使用雙遠(yuǎn)心鏡頭,該類鏡頭可以克服物體位置的變化、物體上的高度差以及其他可能導(dǎo)致軟件處理不正確的圖像信息的問題。所以合理使用雙遠(yuǎn)心鏡頭可以很好的解決圖像的畸變問題。遠(yuǎn)心的重要性透視誤差,也稱為視差,是我們?nèi)粘sw驗(yàn)的一部分。實(shí)際上,視差是使得大腦解釋3D世界的原因。距離我們較近的物體看起來相對(duì)較大,舉個(gè)簡單的例子:想象某人站在一組鐵軌,緊挨著它們的前面,兩根鐵軌相距不遠(yuǎn),看似平行。當(dāng)朝地平線看去時(shí),這些平行的軌道似乎會(huì)聚在一起。我們知道它們實(shí)際上并沒有在遠(yuǎn)處的某個(gè)地方聚集在一起,否則火車會(huì)飛離軌道,但是這種感知方式至關(guān)重要。在常規(guī)成像系統(tǒng)中也存在該現(xiàn)象,其中物體的感知尺寸(其放大率)隨著其距透鏡的距離而變化。雙遠(yuǎn)心鏡頭在光學(xué)上可以糾正這種情況,因此在鏡頭所定義的范圍內(nèi),無論距離如何,物體都保持相同的感知大小。在鐵軌的示例中,雙遠(yuǎn)心鏡頭會(huì)使鐵軌看起來相距相同的距離,而不管它們是在鏡頭的前面還是在地平線上。雙遠(yuǎn)心鏡頭的優(yōu)勢光虎視覺認(rèn)為對(duì)于許多應(yīng)用,都需要雙遠(yuǎn)心,因?yàn)樗谝欢ǖ墓ぷ骶嚯x范圍內(nèi)提供近乎恒定的放大倍率,實(shí)際上消除了視角誤差。這意味著對(duì)象移動(dòng)不會(huì)影響圖像放大率。在具有雙遠(yuǎn)心的光學(xué)系統(tǒng)中,物體離近或遠(yuǎn)離鏡頭不會(huì)導(dǎo)致圖像變大或變小。此外,沿光軸方向具有深度范圍的對(duì)象不會(huì)出現(xiàn)傾斜。例如,圓柱的軸平行于光軸的圓柱物體在遠(yuǎn)心鏡頭的像平面中看起來是圓形的。在非遠(yuǎn)心鏡頭中,同一物體看起來頂部是橢圓形的,而不是圓形的,并且側(cè)面是可見的。值得一提的是,在具有雙遠(yuǎn)心的光學(xué)系統(tǒng)中,聚焦或故意散焦的圖像平面運(yùn)動(dòng)不會(huì)改變圖像大小。雙遠(yuǎn)心鏡頭的另一個(gè)優(yōu)點(diǎn)是,它可以提供極其均勻的圖像平面照明。雙遠(yuǎn)心鏡頭在大多數(shù)情況下可以提供當(dāng)今市場上最低的失真水平(畸變),這大大的提高了它們提供可靠的視覺系統(tǒng)的能力。隨著當(dāng)今機(jī)器視覺系統(tǒng)的需求不斷增長,選擇正確的光學(xué)組件比以往任何時(shí)候都更加重要。光學(xué)系統(tǒng)是調(diào)節(jié)圖像以進(jìn)行分析的關(guān)鍵部分,因此不應(yīng)忽視。每當(dāng)需要進(jìn)行關(guān)鍵測量時(shí),都需要考慮使用雙遠(yuǎn)心鏡頭來產(chǎn)生能夠真正提供所需結(jié)果的系統(tǒng)?!緛碓矗汗饣⒁曈X內(nèi)部培訓(xùn)資料】
像方遠(yuǎn)心、物方遠(yuǎn)心、雙遠(yuǎn)心鏡頭的區(qū)別
像方遠(yuǎn)心、物方遠(yuǎn)心、雙遠(yuǎn)心鏡頭的區(qū)別 工業(yè)鏡頭是機(jī)器視覺系統(tǒng)中十分重要的成像元件,系統(tǒng)若想完全發(fā)揮其作用,工業(yè)鏡頭必須能夠滿足要求才行。隨著機(jī)器視覺系統(tǒng)在精密測量領(lǐng)域的廣泛應(yīng)用,普通工業(yè)鏡頭難以滿足要求,而遠(yuǎn)心鏡頭應(yīng)運(yùn)而生。 遠(yuǎn)心鏡頭主要為矯正傳統(tǒng)工業(yè)鏡頭視差而設(shè)計(jì),它可以在一定的物距范圍內(nèi),使得到的圖像放大倍率不變,從而彌補(bǔ)普通工業(yè)鏡頭“遠(yuǎn)大近小”的視覺效果,滿足精密測量的要求。遠(yuǎn)心鏡頭按設(shè)計(jì)原理可分為:像方遠(yuǎn)心光路、物方遠(yuǎn)心光路和雙側(cè)遠(yuǎn)心光路。 --------------光路原理 1)像方遠(yuǎn)心光路 像方遠(yuǎn)心光路的光路圖下圖。它是將孔徑光闌放置在物方焦平面上,像方主光線平行于光軸主光線的會(huì)聚中心位于像方無窮遠(yuǎn)。這種鏡頭的特點(diǎn)是放大倍率與像距無關(guān),可以消除像方調(diào)焦不準(zhǔn)引入的測量誤差。 2)物方遠(yuǎn)心光路 物方遠(yuǎn)心光路的光路圖如下圖。它是將孔徑光闌放置在光學(xué)系統(tǒng)的像方焦平面上,物方主光線平行于光軸主光線的會(huì)聚中心位于物方無限遠(yuǎn)。這種鏡頭的特點(diǎn)是在合理的活動(dòng)范圍內(nèi),物體的放大倍率與物距無關(guān)。即使物距發(fā)生改變,像高也并不會(huì)發(fā)生改變,即測得的物體尺寸不會(huì)變化。根據(jù)這個(gè)原理設(shè)計(jì)出來的鏡頭成為物方遠(yuǎn)心鏡頭,簡稱遠(yuǎn)心鏡頭。 3)雙側(cè)遠(yuǎn)心光路 雙側(cè)遠(yuǎn)心光路就是我們常說的雙遠(yuǎn)心光路,光路圖如下圖。它綜合了像方遠(yuǎn)心和物方遠(yuǎn)心的雙重優(yōu)點(diǎn),在景深范圍內(nèi),物體離得遠(yuǎn)近或者相機(jī)離得遠(yuǎn)近,都不會(huì)影響到成像系統(tǒng)的放大倍數(shù),即像不隨物距和相距的變化而變化。根據(jù)雙側(cè)遠(yuǎn)心光路設(shè)計(jì)出來的鏡頭成為雙遠(yuǎn)心鏡頭。 鏡頭原型 正所謂“弱水三千,只取一瓢飲”。在遠(yuǎn)心鏡頭選型過程中,需要我們根據(jù)實(shí)際情況,從百萬只鏡頭中,挑選出最適合我們的那一個(gè)。在了解了遠(yuǎn)心鏡頭的光路原理之后,讓我們來康康鏡頭參數(shù)的含義吧?。?)物方遠(yuǎn)心鏡頭 前面提到,物方遠(yuǎn)心鏡頭簡稱為遠(yuǎn)心鏡頭。遠(yuǎn)心鏡頭常用參數(shù)包括倍率、工作距離、物方分辨率、景深、數(shù)值孔徑NA等。在眾多參數(shù)中,可能會(huì)讓大家困惑的參數(shù),應(yīng)該是數(shù)值孔徑NA了吧。 遠(yuǎn)心鏡頭中提到的數(shù)值孔徑NA指像方數(shù)值孔徑,數(shù)值孔徑NA值越大,鏡頭分辨率和亮度越佳。數(shù)值孔徑NA與物方分辨率的對(duì)應(yīng)關(guān)系為: 物方分辨率=,λ為測試光波長。一般遠(yuǎn)心鏡頭參數(shù)中,也會(huì)給出鏡頭可匹配的像元大小。如果參數(shù)中并沒有給出鏡頭的良配怎么辦呢?不慌,不慌,一個(gè)公式解決煩惱:匹配相機(jī)像元尺寸=物方分辨率*鏡頭倍率。 (2)雙遠(yuǎn)心鏡頭 雙遠(yuǎn)心鏡頭常用參數(shù)相對(duì)于遠(yuǎn)心鏡頭來說更容易理解。它包括倍率、物方分辨率、工作距離、景深、遠(yuǎn)心度等。在這些參數(shù)中,各參數(shù)的對(duì)應(yīng)關(guān)系與遠(yuǎn)心鏡頭的對(duì)應(yīng)關(guān)系相一致。需要特別解釋一下的,應(yīng)該只有遠(yuǎn)心度了。它是評(píng)價(jià)遠(yuǎn)心鏡頭和雙遠(yuǎn)心鏡頭好壞的重要參數(shù)之一。 遠(yuǎn)心度是指主光線偏離光軸的角度。角度越小,遠(yuǎn)心度越好,鏡頭的倍率誤差越小。在測量過程中的表現(xiàn)為:在景深范圍內(nèi),保證不同工作距下,物體的放大率是一樣的。它是彌補(bǔ)普通工業(yè)鏡頭“遠(yuǎn)大近小”這一弊端的重要因素。 -------------雙遠(yuǎn)心鏡頭優(yōu)勢遠(yuǎn)心鏡頭和雙遠(yuǎn)心鏡頭常用于精密測量領(lǐng)域。在解釋完他們的光路原理和參數(shù)意義后,大家有沒有困惑,遠(yuǎn)心鏡頭和雙遠(yuǎn)心鏡頭在景深范圍內(nèi),工作距離都不會(huì)影響成像倍率,且畸變值都很小。那在選型過程中,如何取舍呢?雙遠(yuǎn)心鏡頭當(dāng)然是靠實(shí)力取勝啦。 雙遠(yuǎn)心鏡頭相對(duì)于遠(yuǎn)心鏡頭景深更大。當(dāng)其他參數(shù)相同的情況下,雙遠(yuǎn)心鏡頭的工作范圍比遠(yuǎn)心鏡頭的工作范圍要大,可觀測的范圍更廣。當(dāng)我們需要觀測的物體高度差比較大時(shí),可以優(yōu)先考慮雙遠(yuǎn)心鏡頭。 雙遠(yuǎn)心鏡頭相對(duì)于遠(yuǎn)心鏡頭遠(yuǎn)心度也更高。在精密測量的選型過程中,如果對(duì)觀測物體精度要求很高時(shí),雙遠(yuǎn)心鏡頭會(huì)是一個(gè)更好的選擇。 >>光虎光電科技(天津)有限公司<< >>公司網(wǎng)址:gggddd.com.cn<<
3D無序抓取
什么是3D無序抓???3D無序抓取就是利用3D成像系統(tǒng)對(duì)工件表面進(jìn)行感知和分析,計(jì)算得到物體的實(shí)時(shí)空間坐標(biāo)和姿態(tài),無需示教即可無縫驅(qū)動(dòng)機(jī)械臂可被廣泛應(yīng)用于料框堆疊工件的識(shí)別/無序抓取等多種需求。針對(duì)料框中散亂工件的上下料技術(shù)難點(diǎn)及機(jī)器代替人工的趨勢,3D視覺引導(dǎo)定位機(jī)器人無序抓取系統(tǒng)解決方案采用3D相機(jī)進(jìn)行三維數(shù)據(jù)的采集、匹配、識(shí)別,并將最合適抓取工件的坐標(biāo)轉(zhuǎn)換為機(jī)器人坐標(biāo),機(jī)器人根據(jù)限定條件進(jìn)行最優(yōu)路徑規(guī)劃完成散亂工件的抓取,最終實(shí)現(xiàn)無序抓取的整個(gè)流程。為什么要使用3D無序抓???在工業(yè)上,機(jī)器人完成重復(fù)性工作已經(jīng)很常見了,但是無序的應(yīng)用環(huán)境則要復(fù)雜得多。這就意味著機(jī)器人無法依靠設(shè)定好的程序繼續(xù)執(zhí)行工作,而是需要對(duì)環(huán)境進(jìn)行感知、分析,從而再做出判斷。在沒有應(yīng)用3D視覺之前,雜亂無章的工作任務(wù)通常是用傳統(tǒng)的工裝實(shí)現(xiàn)定位的。這種方式無法滿足不同產(chǎn)品使用一個(gè)工裝定位的問題。隨著電子行業(yè)的興起,工業(yè)生產(chǎn)中無序類的應(yīng)用需求越來越多。為了解決這個(gè)問題,3D視覺就成為了最佳的選擇。專門針對(duì)散亂堆放的工件設(shè)計(jì),來高效地完成3D智能抓取,來替代傳統(tǒng)的工裝夾具。3D無序抓取在實(shí)際工業(yè)中的使用使用3D無序抓取命令,可以做到:檢測任何物體的每個(gè)位置和形狀;在盒子中檢測未分類的零件,用機(jī)器人將他們撿起來并送入生產(chǎn)機(jī)器;將盒子中每個(gè)檢測到的零件的位置發(fā)送給機(jī)器人。通過3D匹配,可以只用1個(gè)3D傳感器來配置之前的任何對(duì)象的形狀和位置。因此,可以用來無序抓取復(fù)雜形狀的零件。在這些方向上3D無序抓取也得到了應(yīng)用:>> 多品種工件的機(jī)器人3D定位抓取上料>> 料框堆疊物體3D識(shí)別定位>> 復(fù)雜多面工件的柔性化3D定位抓取>> 大型物體3D定位抓取>> 工件的無序來料3D定位>> 多工序間機(jī)器人協(xié)作3D定位抓取>> 輸送帶上物體的快速3D定位抓取>> 噴涂機(jī)器人來料3D識(shí)別定位>> 大型設(shè)備的機(jī)器人裝配3D定位3D無序抓取現(xiàn)狀及未來發(fā)展從生產(chǎn)和環(huán)境適應(yīng)性的角度來講,未來幾年的發(fā)展方向?qū)?D視覺有著更廣泛的需求。這要求3D相機(jī)能夠通過對(duì)工件3D數(shù)據(jù)的掃描,幫助機(jī)器人快速準(zhǔn)確的找到被測零件并確認(rèn)其位置,引導(dǎo)機(jī)械手準(zhǔn)確抓取定位工件,從而實(shí)現(xiàn)工業(yè)機(jī)器人自動(dòng)化生產(chǎn)線的柔性工裝。而在應(yīng)用拓展方面,除了智能抓取,當(dāng)前,機(jī)器人3D視覺在自動(dòng)化焊接、自動(dòng)化切割、自動(dòng)化裝配、自動(dòng)化碼垛等方面也有廣泛應(yīng)用?!緛碓矗汗饣⒁曈X內(nèi)部培訓(xùn)資料】